

中华人民共和国国家标准

GB/T XXXXX—XXXX

氢气储存输送系统 第1部分:通用要求

Storage and transportation systems for gaseous hydrogen Part 1: General requirements

点击此处添加与国际标准一致性程度的标识

(征求意见稿)

XXXX - XX - XX 发布

XXXX - XX - XX

中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会

目 次

前	吉	II
1	范围	1
2	规范性引用文件	1
3	术语和定义	1
4	通用要求	2

前 言

本标准GB/T XXXX《氢气储存输送系统》分为以下部分:

- -第1部分:通用要求;
- --第2部分: 金属材料与氢环境相容性试验方法;
- --第3部分: 金属材料氢脆敏感度试验方法;
- -第4部分: 氢气储存系统技术要求;
- --第5部分: 氢气输送系统技术要求;
- --第6部分: 氢气压缩系统技术要求;
- --第7部分: 氢气灌装系统技术要求;
- ---第8部分: 氢气储存输送系统防火防爆技术。

本部分为GB/T XXXX的第1部分:通用要求。

本部分按照GB/T 1.1—2009《标准化工作导则 第1部分:标准的结构和编写》给出的规则起草。

本部分由全国氢能标准化技术委员会(SAC/TC309)提出并归口。

本部分起草单位: XXXX、XXXX、XXXX、XXXX。

本部分主要起草人: XXX、XXX、XXX、XXX。

氢气储存输送系统 第1部分:通用要求

1 范围

本标准规定了氢气储存输送系统(以下简称系统)总体设计、消防安全、人员培训、安装调试、运行管理和风险评估的通用要求。

本标准适用于工作压力不大于 140MPa、环境温度不低于-40℃且不高于 65℃的氢气储存系统、氢气压缩系统、氢气输送系统、氢气灌装系统及其组合系统和安全附件。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

- GB 2894 安全标志及其使用导则
- GB 3836.1 爆炸性环境 第1部分:设备 通用要求
- GB 12014 防静电服
- GB 12358 作业场所环境气体检测报警仪 通用技术要求
- GB/T 15706 机械安全 设计通则 风险评估与风险减小
- GB 16808 可燃气体报警控制器
- GB 21146 个体防护装备 职业鞋
- GB/T 24353 风险管理 原则与实施指南
- GB/T 27921 风险管理 风险评估技术
- GB/T 29729 氢系统安全的基本要求
- GB 50058 爆炸危险环境电力装置设计规范
- GB 50177 氢气站设计规范
- GB 50217 电力工程电缆设计规范
- GB 50516 加氢站技术规范
- HJ 2.1 环境影响评价技术导则 总纲
- TSG D0001 压力管道安全技术监察规程—工业管道
- TSG 21 固定式压力容器安全技术监察规程
- TSG R0005 移动式压力容器安全技术监察规程
- TSG R0006 气瓶安全技术监察规程

3 术语和定义

GB/T 24499界定的以及下列术语和定义适用于本文件。

3. 1

GB/T XXXXX—XXXX

氢气储存输送系统 storage and transportation systems for gaseous hydrogen

氢气的储存系统、压缩系统、输送系统、灌装系统及其组合系统。

3. 2

固定式氢气储存系统 stationary systems for storage of gaseous hydrogen

安装在固定位置使用的氢气储存系统。

3.3

移动式氢气储存系统 portable systems for storage of gaseous hydrogen

安装在一个或者多个可移动或者搬运的底座上的氢气储存系统。

3.4

安全附件 safety accessories

为了使系统安全运行而安装在系统或设备上的安全装置,包括超压泄放装置、紧急切断装置、安全 联锁装置、阻火器等。

3.5

工作压力 operating pressure

在正常工作情况下,系统可能达到的最高压力(表压)。

The varying pressure in a fuel supply container during normal container use.

3.6

风险评估 risk assessment

通过科学技术和安全技术分析测评系统、设备、事件带来的影响或损失的可能程度。

4 通用要求

4.1 通则

- 4.1.1 系统应遵循以下基本原则:
 - a) 在满足需求的前提下,控制储存和操作中氢气的量;
 - b) 减少、避免泄漏源和点火源:
 - c) 控制处于爆炸危险区域内的人员及其停留时间;
 - d) 氢气与氧气、压缩空气、卤素气体、氧化剂及其他助燃性物质的存储系统应分开;
 - e) 爆炸危险区域内无其它可燃物,通道畅通;
 - f) 系统不得处于负压状态。
- 4.1.2 系统的爆炸危险区域等级范围划分应符合 GB 50177、GB 50516、GB 50058 的规定。
- **4.1.3** 系统有爆炸危险区域(房间)应设有明显标志,并应指出其危险性,如氢气-易燃气体、禁止明火等。
- 4.1.4 系统中承压设备的材料、设计、制造、安装、使用和检验应当符合 TSG 21、TSG R0005、TSG D0001、TSG R0006 等相关安全技术规范的要求。
- 4.1.5 系统中的设备支座、管道支架、盖板等应采用不燃材料制作。

- **4.1.6** 系统的设计、制造、安装和运行单位应建立健全的质量管理体系并有效运行,运行单位还应建立安全防护管理体系。
- 4.1.7 系统的氢气品质应满足使用要求,并应符合相关标准的规定。

4.2 设计

4.2.1 基本要求

- 4.2.1.1 系统设计应满足以下要求:
 - a) 失效-安全设计;
 - b) 远程监测和控制压力、流速、温度等运行参数;
 - c) 安装独立的安全系统,且在出现异常、故障或者失灵时,能自动触发应急和报警。
- 4.2.1.2 系统的平面布置应当符合 GB 50177、GB 50516、GB/T 29729 等规范标准的规定。
- 4.2.1.3 系统应设置氮气置换接口。
- 4.2.1.4 系统使用区域应通风良好,并应确保空气中氢气体积含量不超过1%。

4.2.2 材料

- 4.2.2.1 选择系统用材料时应综合考虑使用条件(如氢气纯度、工作温度、工作压力、操作特点等)、 材料性能(力学性能、工艺性能、物理性能和化学性能)、设备制造工艺以及经济合理性。
- 4. 2. 2. 2 系统用材料的质量、规格与标志,应当符合相应材料的国家标准或者行业标准的规定,与氢 气直接接触的材料应与氢气有良好的相容性。
- 4.2.2.3 材料首次在压力氢气环境中使用,或者缺少压力氢气环境下的材料性能数据时,应在与使用条件相当的氢气组分、温度和压力范围内,按照本标准第2部分的相关规定进行材料与氢相容性试验。4.2.2.4 系统用氢气管道应采用无缝金属管道,不得采用铸铁管和管件。

4.2.3 连接

4.2.3.1 氢气管道的连接宜采用焊接或卡套接头。氢气管道与设备、阀门的连接,宜采用法兰或锥管螺纹连接。

4.2.4 设备

- 4.2.4.1 系统中的氢气储存容器、压缩机、氢气管道等设备应符合 GB/T 29729 的规定。
- 4.2.4.2 氢气压缩机前应设氢气缓冲罐。输送氢气用压缩机后应设氢气罐,并应在氢气压缩机的进气管和排气管之间设旁通管道。

4.2.5 安全附件和仪表

- 4.2.5.1 系统至少应设置以下安全附件和仪表:
 - a) 超压泄放装置;
 - b) 压力检测仪表或压力传感器:
 - c) 氢气检测报警仪:
 - d) 阻火器。
- 4.2.5.2 超压泄放装置应能防止承压设备或者系统内的压力超过其设计压力。
- 4.2.5.3 安全附件应按 TSG 21、TSG R0006 等规范标准的相关规定进行定期检验。
- 4.2.5.4 在超压泄放装置与被保护系统之间一般不宜设置截止阀门。设置截止阀时,系统正常运行期间截止阀门必须保证全开(加铅封或者锁定),截止阀门的结构和通径不得妨碍超压泄放装置的安全释放。
- 4.2.5.5 超压泄放装置的排出口应装设带有阻火器的排放管。
- **4.2.5.6** 系统可根据工艺需要设置气体过滤装置、在线氢气纯度分析仪表、在线氢气泄漏报警仪表、在线氢气湿度仪表等。

GB/T XXXXX—XXXX

- 4. 2. 5. 7 仪表的精度等级和量程应满足使用要求,并应有产品合格证和检定日期,经校核合格铅封后方可安装,其安装位置应便于作业人员观察和检修。
- 4.2.5.8 使用的仪表或控制器为电气设备时,应设置防静电接地装置,并应定期检测接地电阻。
- 4.2.5.9 应根据精度、可靠性、可维护性、检测范围、响应时间等因素选用氢气检测报警仪,且应符合 GB 12358 和 GB 16808 的有关规定。
- 4.2.5.10 氢气储存输送系统按压力等级的不同,应分别设有超压报警和低压报警。

4.2.6 管道

- 4.2.6.1 氢气管道的敷设应符合 GB50177 的规定。
- 4.2.6.2 阀门使用应充分考虑氢气的影响,应符合 GB 50177 的规定。
- 4.2.6.3 固定式氢气储存系统的排放管内气体应排放到室外安全的区域,远离人员活动区、电线、火源、建筑物的开口处,排放管应高于附近有人员作业的最高设备 2m 以上。
- 4.2.6.4 移动式氢气储存系统的排放管内气体排放时不许对周围人员、车辆、建筑、设施等产生危害; 排放管泄放口不得朝向系统本身。

4.3 安装调试

4.3.1 安装

应按产品使用说明书和设计文件的要求进行安装,且应做到位置准确、固定平稳可靠,以及接管和 附件安装正确。

4.3.2 试验

- 4.3.2.1 首次使用或者大修后的系统,应当按相应规范标准的要求进行耐压试验、清洗(吹扫)和泄漏试验,符合要求后方可投入使用。
- 4.3.2.2 系统试验前,使用单位应当核对其与设计文件的一致性,以及压力容器、气瓶、压力管道等特种设备的有效合格证明。
- 4.3.2.3 耐压试验宜采用液压试验。不宜进行液压试验时,可采用气压试验或气液组合试验。
- 4.3.2.4 泄漏试验宜采用介质为氮气或者氮氦混合气的气密性试验。

4.3.3 置换

- 4.3.3.1 试验合格后, 氢气进入前, 系统应当进行吹扫。
- 4. 3. 3. 2 吹扫应按照相关规定执行。吹扫后应进行取样分析,氧气的体积分数不超过 0.5%或者氢气的体积分数不超过 0.4%。

4.3.4 开机

当系统达到操作压力时,应对所有接头进行检漏,以确保在压力氢气环境下的气密性。

4.3.5 操作

- 4.3.5.1 作业人员上岗时应穿着符合 GB 12014 规定的阻燃、防静电工作服和符合 GB 21146 规定的防静电鞋。工作服宜上、下身分开,容易脱卸。严禁在爆炸危险区域穿脱衣服、鞋子或类似物。严禁携带火种、非防爆电子设备进入爆炸危险区域。
- 4.3.5.2 当系统需要单人作业时,应提供有效的报警呼救装置,并对其进行定期检查。

4.4 运行管理

- 4.4.1 系统的清洗、置换、充装、泄漏检测、修理和改造、应急处理等操作应制定详细的操作程序, 并应定期评估操作程序以确保其有效性。
- 4.4.2 定期由专业人员对各安全附件及仪表进行维护、检测、校核以及测试,相关作业记录应至少保留3年。

- 4.4.3 系统运行单位应制定健全的管理制度,至少应包括:运行现场安全管理制度、消防安全管理制度、设备安全管理制度、作业人员安全管理制度、安全检查管理制度、事故上报处理流程、定期检验制度、安全保卫工作制度等。
- **4.4.4** 系统停运后,应用盲板或者其他有效隔离措施隔断与其他设备的联系,并使用符合安全要求的惰性气体进行置换吹扫。
- 4.4.5 系统发生氢气泄漏并着火时,应立即切断气源;不能切断时,不得熄灭正在燃烧的气体,应对周围设备喷水冷却。
- 4.4.6 氢火焰肉眼不宜察觉,消防人员应佩戴自给式呼吸器、穿防静电服进入现场,注意防止外露皮肤烧伤。
- 4.4.7 系统检修或检验作业应制定作业方案,设置隔离、置换、通风等安全防护措施,并经过设备、安全等相关部门审批;未经安全部门主管书面审批,作业人员不得擅自维修或者拆开相应的安全保护装置。
- 4.4.8 作业人员应经过岗位培训、考试合格后持证上岗。特种作业人员应经过专业培训,持有特种作业资格证,并在有效期内持证上岗。
- **4.4.9** 培训内容至少应包括氢气特性、操作规程、应急预案、安全疏散、安全管理制度、消防设备和防护设备等。

4.5 消防安全:

- 4.5.1 氢气排放管道应设阻火器,阻火器的设置应满足 GB 50177 的相关规定。
- 4.5.2 系统应设置防雷及防静电装置,并应符合 GB 50177、GB 50058 的有关规定,且接地点不应少于 2 处。
- 4.5.3 爆炸危险区域内的电气设备应符合 GB 3836.1 的规定,防爆等级应为 II 类,C 级, T_1 组;因特殊需要而使用的非防爆设备时应采取有效的隔爆措施。
- 4.5.4 系统保护区域内应设灭火器材和消防给水系统,灭火器材的配置应符合 GB50516 的规定。

4.6 风险评估

- 4.6.1 系统应进行风险评估。必要时,还应进行社会稳定风险评估。
- 4.6.2 风险评估官采用定量评估或者半定量评估。
- 4. 6. 3 风险评估应包括风险识别、风险分析、风险评价和风险应对,并符合 GB/T 24353、GB/T 27921 和 GB/T 15706 等标准的相关规定。
- 4.6.4 系统设计时应充分考虑系统、子系统或者设备在全寿命周期内可能产生的失效模式(如泄漏、 火灾、爆炸等),并提出预防失效的安全措施。
- 4.6.5 系统使用单位应当制订应急救援预案,并定期进行事故应急演练。

5