设为首页收藏本站
首页>科技成果>论文
Text Classification Using ES Based L1-LS-SVM
论文题目 Text Classification Using ES Based L1-LS-SVM
作者 魏利伟,张莺,李文武
年度 2017
发表/出版时间 2017/11/26
发表期刊/会议 Computer Science and Engineering
关键词 LS-SVM, SVM, ES based L1-LS-SVM, Text classification
摘要 With the advent of big-data age, it is essential to organize, analyze, retrieve and protect the useful data or sensitive information in a fast and efficient way for customers from different industries and fields. In this paper, evolution strategies based a least squares support vector machine with L1 penalty (ES based L1-LS-SVM) is proposed to deal with LS-SVM shortcomings. A minimum of 1-norm based object function is chosen to get the sparse and robust solution based on the idea of basis pursuit (BP) in the whole feasibility region. A real Chinese corpus from Fudan University is used to demonstrate the effectiveness of this model. The experimental results show that ES based L1-LS-SVM can obtain a small number of support vectors and improve the generalization ability of ES based LS-SVM.
地址:北京市海淀区知春路4号 电话:010-58811536; 010-58811792 
Email:yuanban@cnis.ac.cn 邮编:100191
版权所有:中国标准化研究院    技术支持:标新科技(北京)有限公司    
京ICP备10046988号-34 京公海网安备110108001709号