ICS 27.010 F 04

GB/T 14909-201X 代替 GB/T 14909-2005

能量系统㶲分析技术导则 (征求意见稿)

Technical guidelines for exergy analysis in energy system

201X - XX - XX 发布

201X - XX - XX 实施

国家市场监督管理总局 发布 中国国家标准化管理委员会

目 次

前言		3
1	范围	4
2	规范性引用文件	4
3	术语和定义	4
4	<u> 烟的计算</u>	5
5	<u> </u>	7
6	畑分析的评价指标	8
7	畑分析的步骤	9
附录 A	(规范性附录) <u>畑值与焓值、畑平衡与畑损失的计算</u>	11
A.1	<u>功和热的畑</u>	11
A.2	稳定流动体系与封闭体系的佣	11
A.3	<u>物质的畑值与焓值</u>	12
A.4	<u> 压力低于 100 kPa 条件下的㶲值与焓值</u>	18
A.5	基本过程的畑损失、畑效率与过程品位	18
附录 B	(资料性附录) 畑分析方法的计算实例	21
B.1	四种建筑供热方式佣分析及品位分析	21
B.2	<u>甲醇合成与分离工艺畑分析</u>	25

前言

本标准依据 GB/T1.1—2009 给出的规则起草。

——修改了标准的适用范围(见第1章,2005版第1章);

_____增加了"规范性引用文件"(见第2章);

<u>____修改了"体系"、"环境"、"佣"、"佣损失"和"佣分析"定义(见3.1~3.5, 3.10, 2005版2.1~2.5);</u> 增加了"物质的标准佣与标准焓"、"物质品位"、"过程品位"、"佣效率"定义(见3.6~3.9);

——修改了环境参考态的大气组成,并完善了元素的基准物体系(见4.1,表1和表2);

— 修改并完善了"佣分析的步骤"。增加了"能量平衡"、"能量品位的计算",完善了"评价与分析"(见 第7章,2005版第6章);

——<u>修改了附录 B(资料性附录) 佣分析方法的计算实例。</u>以"四种建筑供热方式佣分析及品位分析" 替代"锅炉的佣分析",<u>以"甲醇合成与分离工艺佣分析"替代了"苯加氢制取环己烷工艺的佣分析"(见附录</u> <u>B,2005 版附录 B)。</u>

本标准由全国能源基础与管理标准化技术委员会<u>(SAC/TC20)提出并</u>归口。

本标准的主要起草单位:<u>清华大学、中国科学院工程热物理所、华北电力大学、中国标准化技术研究</u> <u>院、北京化工大学、中国石油和化学工业联合会、中国电力企业联合会、中国城镇供热协会、华电电力科</u> <u>学研究院有限公司、北京市热力集团有限责任公司、同方人工环境有限公司、天津水泥设计研究院、石油</u> 规划总院、中国石化工程建设有限公司、北京首钢国际工程技术有限公司。

本标准的主要起草人:<u>郑丹星、史琳、张娜、段立强、刘猛、陈小辉、黄维佳、戴晓业、冯乐军、姜</u> <u>曦灼、周俊华、常云岭、牛小化、阮炯明、汉京晓、高沛沣、狄东仁、王广河、蹇江海、王代军</u>。

本标准所代替标准的历次版本发布情况为:

能量系统佣分析技术导则

1 范围

本标准规定了能量系统佣分析的基本概念与术语、佣的计算、佣平衡、<u>佣分析的评价指标</u>,<u>以及佣分</u> <u>析的步骤等</u>,并给出了佣分析的计算实例。

本标准适<u>用于涉及能量利用</u>或能量转换的设备、过程、工艺流程或系统,以及<u>可再生燃料技术评价、</u> 产品生命周期评价等环境保护方面相关问题的分析<u>,也适用于供能方式评价、能源审计等能源管理工作</u>。

2 规范性引用文件

<u>下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。</u> 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 2587 用能设备能量平衡通则

<u>GB/T 3102</u> 量和单位

GB/T 3484 企业能量平衡通则

<u>GB/T17781</u> 技术能量系统、基本概念

GB/T 28749 企业能量平衡网络图绘制方法

GB/T 28751 企业能量平衡表编制方法

<u>GB/T 35071</u> 能量系统优化导则

3 术语和定义

下列术语和定义适用于本文件。

3.1

体系 system

根据研究目的而确定的具有明确边界的分析对象;对于实际评价对象,有时亦称为系统。根据同一概 念,体系内部还可以分割成两个或两个以上的子体系(subsystem),或称为子系统。

3.2

环境 environment

为外界的一部分,而体系边界以外均称为外界。

3.3

<u>环境参考态</u> <u>environmental reference state</u>

作为畑分析基准的特定理想外界,由处于完全平衡状态下的大气、地表和海洋中的选定基准物质所组成。即由环境参考态温度、环境参考态压力,以及一个对应于各种元素的环境基准物质体系。

3.4

畑 exergy

体系与环境作用,从所处的<u>任意</u>状态<u>(具有一定的温度、压力与化学组成)</u>达到与环境相平衡状态的 可逆过程中,对外界做出的功。

3.5

<u>内部畑损失</u> internal exergy loss

由于体系内部过程不可逆性所造成的体系做功能力的减少。

3.6

<u>外部畑损失</u> external exergy loss

<u>由于体系的外部废弃所造成的体系做功能力的减少。例如,绝热不良导致的热损失、以及废弃物所产</u> 生的损失等。

3.7

物质的标准佣与标准焓 standard exergy and standard enthalpy of substance

处于环境参考态温度、环境参考态压力下,纯物质的㶲值与焓值(详见附录 A.3)。

3.8

<u>物质品位</u> energy grade of substance

物质的烟与物质的焓的比值。

3.9

<u>过程品位</u> energy level of process

过程初始状态与终了状态的㶲变与过程初始状态与终了状态的焓变的比值。

3.10

基于过程或系统的烟衡算,表征过程或系统的热力学完善度的数值;此值越高表示过程或系统在能量 利用中的烟损失越少。通常为以百分数表示的收益烟与支付烟之比,或为以百分数表示的输出烟与输入烟 之比;详见第6章。

3.11

基于热力学第二定律的过程能量分析法;以能量不仅具有"数量",而且具有"质量"的概念,借助烟效 率剖析能量过程与能量系统中能的贬值情况及其热力学完善度,借助烟损失揭示烟损失大小与分布,借助 品位分析适度把握过程推动力,评估节能技术改进的潜力与可行性。

4 烟的计算

佣值的计算基准是环境参考态,它是基准物质体系在规定的温度、压力下的状态。

本标准规定///的基准态温度为 298.15 K (25℃),基准态压力为 100 kPa;基准物质体系规定为:大气物质所含元素的基准物质取大气中的对应成分,其组成如表 1 所示,即在上述温度和压力条件下的<u>干空气;</u> 氢的基准物质是<u>液态纯水</u>;其他元素的基准物质取表 2 中所列的纯物质。

表 1 环境参考态下的大气组成								
组分	N_2	O ₂	Ar	CO ₂	N	ſe	He	
组成(摩尔分	数) <u>0.78085</u>	0.209477	<u>0.00934</u>	0.0003	<u>14 1.818</u>	×10 ⁻⁵	<u>5.24×10⁻⁶</u>	
表 2 元素的基准物质								
元素	基准物质	元素	基准物	质	元素	基	產准物质	
Ag	AgCl	Н	<u>H₂O</u>		Pr		PrF3	
Al	Al ₂ O ₃	He	He (空 ^左	į)	Pt		Pt	
Ar	Ar (空气)	Hf	HfO ₂		Rb	Ι	Rb ₂ SO ₄	
As	As ₂ O ₅	Hg	HgCl ₂		Rh		Rh	
Au	Au	Но	HoCl ₃ 6H	I ₂ O	Ru		Ru	
В	H ₃ BO ₃	Ι	PdI ₂		S	Cas	SO ₄ 2H ₂ O	
Ba	Ba(NO ₃) ₂	In	In ₂ O ₃		Sb		Sb ₂ O ₅	
Be	BeO Al ₂ O ₃	Ir	Ir		Sc		Sc_2O_3	
Bi	BiOCl	K	KNO ₃	;	Se		SeO ₂	
Br	PtBr ₂	Kr	Kr		Si		SiO ₂	
С	CO ₂ (空气)	La	LaF ₃		Sm		SmCl ₃	
Ca	CaCO ₃	Li	LiNO	3	Sn		SnO_2	
Cd	CdCl ₂	Lu	Lu ₂ O ₃		Sr		SrF ₂	
Ce	CeO ₂	Mg	CaCO ₃ Mg	CO ₃	Та		Ta_2O_5	
Cl	NaCl	Mn	MnO ₂		Tb		TbO ₂	
Co	CoFe ₂ O ₄	Мо	CaMoC) ₄	Te		TeO ₂	
Cr	Cr ₂ O ₃	Ν	N_2 (空 ^左	į)	Th		ThO ₂	
Cs	CsNO ₃	Na	NaNO	3	Ti		TiO ₂	
Cu	CuO	Nb	Nb ₂ O ₅	5	T1		TlCl ₃	
Dy	DyCl ₃ 6H ₂ O	Nd	NdF ₃		Tm	,	Tm_2O_3	
Er	ErCl ₃ 6H ₂ O	Ne	Ne (空 ^左	ī)	U	U	$O_3 H_2O$	
Eu	EuCl ₃ 6H ₂ O	Ni	NiO Al ₂	O ₃	V		V_2O_5	
F	Na ₃ AlF ₆	0	O ₂ (空 ^左	į)	W	(CaWO ₄	

表 2	(续)

	·				
元素	基准物质	元素	基准物质	元素	基准物质
Fe	Fe ₂ O ₃	Os	OsO4	Y	Y ₂ O ₃
Ga	Ga ₂ O ₃	Р	3CaO P ₂ O ₅	Yb	Yb ₂ O ₃
Gd	GdF ₃	Pb	PbCl ₄	Zn	ZnSiO ₃
Ge	GeO ₂	Pd	Pd	Zr	ZrSiO ₄

<u>功和热的烟、物质的烟、稳定流动体系与封闭体系(状态)的烟的计算方法见附录A。</u>

5 烟平衡(烟衡算)

5.1 煝损失

佣损失按公式(1)计算。各类基本过程(设备)的佣损失计算式见<u>附录 A.5。</u>

$$I = I_{\text{int}} + I_{\text{ext}} \tag{1}$$

式中:

I——系统的㶲损失,单位为<u>千焦(kJ);</u>

*I*_{int}, *I*_{ext}——分别为系统的内部佣损失与外部佣损失,单位为千焦(kJ);

5.2 系统输入与输出之间的拥衡算

系统输入与输出之间的畑衡算按公式(2)计算。

$$E_{\rm in} = E_{\rm out} + I_{\rm int} + \Delta E_{\rm sys} \qquad (2)$$

式中:

 ΔE_{sys} —— 畑在系统内部的积存量,单位为<u>千焦(kJ)</u>。

对于稳定流动<u>系统按公式(3)计算。</u>

$$E_{\rm in} = E_{\rm out} + I_{\rm int} \qquad (3)$$

5.3 系统支付与收益之间的烟衡算

系统支付与收益之间的畑衡算按公式(4)计算。各类基本过程(设备)的畑衡算计算式见附录 A.5。

式中:

*E*_p, *E*_g——分别为系统在能量转变过程中的支付佣与收益佣,单位为<u>千焦(kJ)。</u>

6.1 煝效率

6.1.1 普遍畑效率

普遍㶲效率按公式(5)计算。

$$\eta_{\rm gen} = \frac{E_{\rm out}}{E_{\rm in}} = 1 - \frac{I_{\rm int}}{E_{\rm in}} \tag{5}$$

式中:

 η_{gen} —<u>系统的</u>普遍畑效率。

6.1.2 目的畑效率

目的㶲效率按公<u>式(6)计算。各类基本过程(设备)的</u>// 的 // 放率计算式见附录 A.5。

式中:

 η_{obj} —<u>系统的</u>目的㶲效率。

6.2.1 局部畑损失率

局部㶲损失率按公式(7)计算。

 $\xi_i = \frac{I_i}{I} \tag{7}$

式中:

ξ-----系统的局部拥损失率;

6.2.2 局部畑损失系数

局部㶲损失系数按公式(8)计算。

$$Q_i = \frac{I_i}{E_p} \tag{8}$$

式中:

Ω----系统的局部拥损失系数。

系统的局部拥损系数与系统的目的拥效率之间关系为公式(9)。

$$\eta_{\rm obj} = 1 - \sum \Omega_i \tag{9}$$

6.3 单位产品(或单位原料)的消耗烟

GB/T 14909-201×

单位产品(或单位原料)的消耗烟按公式(10)计算。

式中:

ω—<u>系统的</u>单位产品(或单位原料)的消耗烟,单位为千焦每千克(kJ·kg⁻¹);
 M——系统的总产量(或总原料量),单位为千克(kg)。

6.4 能的品位

6.4.1 过程品位

过程品位按公式(11)计算。各类基本过程(设备)的能量品位计算式见附录 A.5。

$$A = \frac{\Delta E}{\Delta H} = \frac{E_2 - E_1}{H_2 - H_1}$$
(11)

式中:

A-----过程品位;

<u>ΔE, ΔH</u>——分别为过程从状态1(初始状态)变化到状态2(终了状态)的烟变与焓变,单位为千焦 (kJ);

<u>E1, E2</u>——分别为处于状态1与状态2下体系的烟值,单位为千焦(kJ);

H₁, H₂——分别为处于状态1与状态2下体系的焓值,单位为千焦(kJ)。

6.4.2 物质品位

物质品位按公式(12)计算。

$$\alpha(T, p, \underline{x}) = \frac{E(T, p, \underline{x})}{H(T, p, \underline{x})}$$
(12)

<u>式中:</u>

<u>α(T, p, x)</u>——物质品位;

E(*T*, *p*, *x*)——处于温度为*T*、压力为*p*和组成为*x*时体系的佣值,单位为千焦(kJ);

H(T, p, x)——处于温度为*T*、压力为*p*和组成为*x*时体系的焓值,单位为千焦(kJ)。此焓值的计算采 用了与佣值相同的环境参考态,见附录 A.3。

7.1 确定对象系统

参照 GB/T 17781 界定评价对象系统的边界、子体系的分割方式,以及穿过边界的所有物质和能量(例 如功或热),并以示意图说明。列表说明系统的参数,例如各个工艺物流节点的温度、压力、流量与物质

组成等。

7.2 能量平衡(能量衡算)

建立系统的能量衡算关系,进行系统的能量衡算。单元用能设备的能量衡算参照 GB/T 2587 实施,企 业的能量衡算参照 GB/T 3484、GB/T 28749 和 GB/T 28751 等标准规范实施。

7.3 明确环境基准

一般,<u>宜</u>采用本标准的环境参考态(见4.1节);涉及化学反应和物质品位等物质组成的佣分析,应采 <u>用本标准的环境参考态</u>;如需酌情选择其他的环境参考态温度与(或)环境参考态压力,</u>应予以<u>特别说</u>明 (参见附录 B.1);相互比较的佣分析,应采用相同的环境参考态。

7.4 说明计算依据

说明所使用的热力学基础数据(如物质的热容、焓和熵等)的来源。列出直接应用本标准的计算公式 或由本标准定义外延得到的数学关系式,并说明应用的场合。<u>必要时,宜说明采用的计算机数值计算软件,</u> 并说明计算中所选择的具体应用功能选项。

7.5 煝衡算

建立与<u>系统的能量衡算关系所对应的佣衡算</u>关系。计算出佣效率、局部佣损失率或局部佣损失系数, 以及单位产品(或单位原料)的消耗佣等评价指标。用表和图辅助表示计算结果,例如基于佣衡算关系, 做出支付,收益,从及,用损失平衡表,或做出输入,加与输出,从及,烟损失平衡表。

7.6 能量品位的计算

根据需要,计算出有关过程的能量品位数据,或有关物质的能量品位数据,并绘制适当的分析用图, 以表示数据结果。

7.7 评价与分析

根据上述计算结果,分析系统在能量利用过程中畑的传递和利用情况,以减少过程的畑损失,探明系统 改进方向与节能潜力,参照 GB/T 35071 研究系统进一步合理用能的可能性。主要工作包括:

b) 考察系统的//损失分布,揭示系统中///损失的重点部位、///损失的大小与产生原因;

c) 根据能量的授受关系,将过程分为供能过程与受能过程。通过比较供能过程与受能过程的能量品位 匹配情形,评价能量在两个过程间传递的合理性,使过程之间推动力(温度差、压力差、或浓度差等热力 学势差)适度,针对性地采用适宜节能技术,提出系统梯级用能的改进措施;

<u>d</u>)根据物质的能量品位数值的大小,认识其品位的高低水平。比较物质在能量转化与利用过程前后或 相关状态的能量品位变化,选择系统合理用能的技术途径与决策。

佣分析步骤与方法的计算实例参见附录 B。

附录 A

A.1 功和热的烟

A.1.1 功的畑

功全部为㶲,见公式(A.1)

$$E = W \tag{A.1}$$

式中:

E——, , 单位为千焦(kJ);

W——功(包括机械能、电能等),单位为千焦(kJ)。

A.1.2 热的烟

传热过程中热(或冷)的㶲见公式(A.2)

$$E_{q} = \int_{T_{0}}^{T} mc_{p} \left(1 - \frac{T_{0}}{T} \right) dT \qquad (A.2)$$

式中:

T0——环境参考态的温度,单位为开尔文(K);

T——体系的温度,T可以高于T₀,也可以低于T₀,单位为开尔文(K);

m——质量,单位为千克(kg);

 c_{p} ——定压比热容,单位为千焦每开尔文每千克(kJ·K⁻¹·kg⁻¹)。

A.2 稳定流动体系与封闭体系的烟

A.2.1 稳定流动体系

在不计动能与位能时,处于给定状态下稳定物质流的㶲见公式(A.3)

$$E = (H - T_0 S) - (H_0 - T_0 S_0)$$
 (A.3)

式中:

H, H₀——分别为给定状态和环境参考态下体系的焓,单位为千焦(kJ);

S, S₀——分别为给定状态和环境参考态下体系的熵,单位为千焦每开尔文(kJ·K⁻¹)。

从状态1变化到状态2稳定流动体系的㶲变化见公式(A.4)

$$E_{2} - E_{1} = (H_{2} - T_{0}S_{2}) - (H_{1} - T_{0}S_{1}) \qquad (A.4)$$

式中:

E1, E2——分别为状态1和状态2下体系的烟,单位为千焦(kJ)。

A.2.2 封闭体系的烟

处于给定状态下封闭体系的㶲见公式(A.5)。

$$E = (U - T_0 S + p^{\theta} V) - (U_0 - T_0 S_0 + p^{\theta} V_0) \qquad (A.5)$$

式中:

 p^{θ} ——环境参考态下体系的压力,单位为帕(Pa);

- V, V0——分别为给定状态和环境参考态下体系的体积,单位为立方米(m³);
- U, U₀——分别为给定状态和环境参考态下体系的热力学能,单位为千焦(kJ)。

从状态1变化到状态2封闭体系的㶲变化见公式(A.6)

$$E_{2} - E_{1} = \left(U_{2} - T_{0}S_{2} + p^{\theta}V_{2}\right) - \left(U_{1} - T_{0}S_{1} + p^{\theta}V_{1}\right) \qquad (A.6)$$

式中:

U1, U2——分别为状态1和状态2下体系的热力学能,单位为千焦(kJ);

- V1, V2——分别为状态1和状态2下体系的体积,单位为立方米(m³);
- S1, S2——分别为状态1和状态2下体系的熵,单位为千焦每开尔文(kJ·K⁻¹)。

A.3 物质的㶲值和焓值

A.3.1 物质的标准烟和标准焓

A.3.1.1 化学元素的标准烟和标准焓

化学元素的标准畑和标准焓见表 A.1。

元素	标准煟 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹	元素	标准煟 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹	元素	标准煟 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹
Ag(s)	86.682	99.412	Н	117.595	137.079	Pr	978.331	1000.363
Al	788.246	796.683	He	30.14	67.764	Pt	0	12.403
Ar	11.585	57.723	Hf	1057.185	1070.184	Rb	354.783	377.664
As	386.237	396.88	Hg	134.914	157.542	Rh	0	9.392
Au	0	14.162	Но	967.785	990.144	Ru	0	8.497

表 A.1 元素的标准 / 元素的标准 / 元素的标准 / 2015 /

GB/T 14909-201×

	表 A.1(续)							
元素	标准佣 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹	元素	标准畑 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹	元素	标准佣 kJ•mol ⁻¹	标准焓 kJ·mol ⁻¹
В	609.942	611.671	Ι	35.491	52.798	S	601.102	610.706
Ba	784.395	803.028	In	412.432	429.664	Sb	420.622	434.187
Be	594.317	597.149	Ir	0	10.584	Sc	906.794	917.109
Bi	308.235	325.139	Κ	388.586	407.876	Se	167.65	180.261
Br	25.842	48.531	Kr	0	48.926	Si	850.609	856.214
С	410.514	412.246	La	989.565	1006.529	Sm	879.632	900.826
Ca	714.003	726.373	Li	374.85	383.525	Sn	516.103	531.367
Cd	297.694	313.136	Lu	891.524	906.729	Sr	740.923	757.529
Ce	1021.528	1042.249	Mg	616.914	626.63	Та	950.678	963.05
Cl	23.111	56.37	Mn	463.366	472.906	Tb	909.307	931.161
Co	240.301	249.275	Mo	713.769	722.329	Te	265.709	280.527
Cr	523.65	530.686	Ν	0.307	28.869	Th	1164.893	1180.814
Cs	399.816	425.218	Na	360.962	376.226	Ti	885.578	894.761
Cu	126.39	136.288	Nb	878.054	888.936	T1	172.259	191.397
Dy	958.304	980.633	Nd	969.476	990.673	Tm	894.344	916.406
Er	977.88	984.139	Ne	27.057	43.62	U	1152.178	1167.193
Eu	873.949	897.143	Ni	218.475	227.39	v	704.656	713.272
F	211.392	241.624	0	1.937	32.513	W	795.48	805.262
Fe	367.821	375.96	Os	294.717	304.435	Y	905.416	918.654
Ga	496.288	508.452	Р	863.668	875.971	Yb	860.494	878.323
Gd	988.211	1008.454	Pb	422.406	441.723	Zn	323.099	335.532
Ge	499.86	509.132	Pd	0	11.27	Zr	1062.882	1074.479

A.3.1.2 化合物的标准烟和标准焓

化合物(A_aB_bC_c)的标准佣<u>见公式(A.7)</u>

式中:

 $\Delta_{f}G^{\theta}(A_{a}B_{b}C_{c})$ ——化合物 $A_{a}B_{b}C_{c}$ 的标准生成 Gibbs 自由能<u>,单位为千焦每摩尔(kJ·mol⁻¹)</u>;

- a, b, c——分别为A、B和C元素的化学计量数;
- $E^{\theta}(A), E^{\theta}(B), E^{\theta}(C)$ ——分别为 A、B 和 C 元素的标准,单位为千焦每摩尔(kJ·mol⁻¹);由表 A.1 查取。 <u>化合物(A_aB_bC_c)的标准焓见公式(A.8)</u>

$$\frac{H^{\theta}(A_{a}B_{b}C_{c}) = \Delta_{f}H^{\theta}(A_{a}B_{b}C_{c}) + aH^{\theta}(A) + bH^{\theta}(B) + cH^{\theta}(C) \qquad (A.8)$$

<u>式中:</u>

 $\Delta_t H^{\theta}(A_a B_b C_c)$ ——化合物 $A_a B_b C_c$ 的标准生成焓,单位为千焦每摩尔(kJ·mol⁻¹);

见有机化合物(45种)的标准佣和标准焓数值。

H^θ(A), H^θ(B), H^θ(C)——分别为 A、B 和 C 元素的标准<u>焓</u>,单位为千焦每摩尔(kJ·mol⁻¹);由表 A.1 查取。 由此计算,表 A.2 列出了部分常见无机化合物(100种)的标准烟和标准焓数值,表 A.3 列出了部分常

化合物	聚集态	标准佣 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹	化合物	聚集态	标准佣 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹
AgBr	s	<u>15.411</u>	<u>47.343</u>	KIO ₃	s	<u>12.192</u>	<u>57.213</u>
AgNO ₃	s	<u>59.411</u>	101.420	KMnO ₄	s	122.551	<u>173.833</u>
AlCl ₃	S	227.611	260.194	K_2SO_4	S	<u>66.484</u>	<u>118.809</u>
Al ₂ (SO ₄) ₃	S	<u>303.490</u>	<u>374.839</u>	КОН	S	<u>129.243</u>	<u>152.767</u>
AsCI ₃	S	<u>196.705</u>	<u>260.091</u>	KBr	S	<u>34.217</u>	<u>62.807</u>
As ₂ O ₃	S	202.519	236.299	KC1	S	<u>3.117</u>	<u>27.746</u>
BH_3	S	1073.585	<u>1129.607</u>	K ₂ CO ₃	S	<u>128.171</u>	<u>174.536</u>
BN	S	<u>385.227</u>	<u>389.640</u>	KCN	S	<u>697.389</u>	<u>735.491</u>
BaO	S	<u>265.941</u>	<u>287.441</u>	KI	S	<u>101.176</u>	<u>132.874</u>
BaCl ₂	S	20.287	<u>57.169</u>	LiBr	S	<u>58.793</u>	<u>80.857</u>
BaSO ₄	S	<u>31.170</u>	<u>70.585</u>	Li ₂ O	S	<u>190.353</u>	<u>201.564</u>
BaCO ₃	S	<u>81.494</u>	<u>114.913</u>	Li ₂ SO ₄	S	<u>36.649</u>	<u>70.608</u>
BeF	g	<u>607.514</u>	<u>668.873</u>	MgO	S	<u>49.917</u>	<u>57.943</u>
Be(OH) ₂	S	<u>17.451</u>	<u>33.432</u>	MgCl ₂	S	<u>68.483</u>	<u>95.171</u>
BeO	S	<u>17.147</u>	<u>21.262</u>	MgCO ₃	S	<u>21.03</u>	<u>40.615</u>
Bi ₂ O ₃	S	<u>129.446</u>	<u>174.616</u>	Mg(OH) ₂	S	<u>22.274</u>	<u>41.113</u>
NaBr	S	<u>37.778</u>	<u>63.658</u>	MgSO ₄	S	<u>78.336</u>	<u>105.587</u>
CaS	S	<u>847.003</u>	<u>863.878</u>	MnO	S	<u>105.328</u>	<u>122.919</u>
CaO	S	<u>112.396</u>	<u>123.786</u>	Mn ₂ O ₃	S	<u>51.403</u>	<u>84.351</u>
Ca(OH) ₂	S	<u>54.593</u>	<u>79.456</u>	Mn ₃ O ₄	S	<u>116.636</u>	<u>162.669</u>
CaCl ₂	S	<u>11.393</u>	<u>43.713</u>	N_2	g	<u>0.613</u>	<u>57.739</u>
CdF_2	S	<u>71.030</u>	<u>95.985</u>	Na ₂ O	S	<u>347.474</u>	<u>369.866</u>
$Cd(NO_3)_2$	S	<u>46.937</u>	<u>108.952</u>	NaNO ₂	S	<u>36.601</u>	<u>111.422</u>
CO	g	275.315	<u>334.259</u>	NaOH	S	<u>100.713</u>	<u>119.918</u>
CO_2	g	20.033	<u>83.772</u>	NaBr	S	<u>37.783</u>	<u>63.658</u>
CeCI ₃	S	<u>112.840</u>	<u>157.860</u>	Na ₂ SO ₄	S	<u>60.808</u>	<u>105.410</u>
CoF ₃	S	<u>155.543</u>	<u>183.748</u>	Na ₂ CO ₃	S	<u>90.052</u>	<u>131.438</u>

表 A.2 部分无机化合物的标准烟和标准焓

表 A.2(续)						
化合物	聚 集 态	标准佣 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹	化合物	聚 集 态	标准佣 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹
CoSO ₄	S	<u>66.730</u>	<u>101.732</u>	NaHCO ₃	s	<u>56.616</u>	<u>86.790</u>
CsO ₂	S	161.617	204.043	NiSO ₄	s	<u>64.741</u>	<u>94.947</u>
CuF ₂	S	<u>330.956</u>	<u>369.566</u>	NH ₄ NO ₃	S	<u>293.172</u>	<u>338.193</u>
Cu ₂ O	S	106.837	<u>134.389</u>	HNO3	1	42.995	<u>89.387</u>
CuSO ₄ H ₂ O	S	<u>54.383</u>	<u>97.916</u>	NH ₃	g	336.721	394.206
FeAl ₂ O ₄	S	<u>98.182</u>	129.878	NO	g	88.834	151.682
Fe(OH) ₃	S	20.947	<u>52.135</u>	NO ₂	g	<u>55.442</u>	126.995
$Fe_2(SO4)_3$	S	<u>299.513</u>	<u>391.191</u>	O_2	g	<u>3.875</u>	<u>65.026</u>
Fe ₂ SiO ₄	S	217.790	<u>261.085</u>	O ₃	g	<u>169.011</u>	240.239
H ₂	g	235.189	<u>274.158</u>	P_2O_5	1	<u>381.466</u>	416.407
HBr	g	<u>89.967</u>	<u>149.210</u>	PbO	S	<u>234.709</u>	254.236
HCl	g	45.427	<u>101.149</u>	PbO ₂	S	<u>201.737</u>	223.949
HF	g	<u>54.287</u>	<u>106.103</u>	PbCl ₂	S	<u>154.515</u>	<u>195.063</u>
HgI ₂	S	78.926	<u>164.883</u>	PbBr ₂	S	213.206	261.385
HgO	S	78.290	<u>99.255</u>	PbSO ₄	s	218.278	262.580
HgSO ₄	S	148.998	<u>190.799</u>	PbCO ₃	s	213.352	252.408
Hg ₂ SO ₄	S	<u>117.961</u>	<u>155.199</u>	SO_2	g	<u>304.931</u>	<u>378.931</u>
HI	g	154.676	216.277	SO ₃	g	<u>235.879</u>	<u>312.444</u>
H ₂ O	g	8.577	<u>64.871</u>	TiNO ₃	S	729.167	777.169
H ₂ O ₂	1	<u>118.706</u>	<u>151.383</u>	TiCl ₂	S	418.258	444.286
H ₃ PO ₄	1	<u>100.603</u>	<u>145.559</u>	SnO	S	<u>260.93</u>	<u>277.980</u>
Hg_2SO_4	S	<u>117.961</u>	<u>155.199</u>	SO_2	g	<u>304.931</u>	<u>378.931</u>
H_2S	g	803.005	<u>864.363</u>	ZnO	S	4.547	<u>17.545</u>
H_2SO_4	1	<u>154.136</u>	200.915	ZnSO ₄	S	<u>63.245</u>	<u>96.189</u>
		表A	3 部分有机化	合物的标准。	用和标?	 隹焓	

化合物 聚 集 k 标准焓 kJ·mol ⁻¹ 化合物 聚 集 			1X A.J			田石		
CH ₄ g <u>830.426</u> <u>885.962</u> CH ₃ COOC ₂ H ₄ 1 <u>2136.528</u> <u>2194.263</u>	化合物	聚集态	标准畑 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹	化合物	聚集态	标准佣 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹
	CH_4	g	830.426	885.962	CH ₃ COOC ₂ H ₄	1	2136.528	<u>2194.263</u>
$C_{2}H_{6} \qquad g \underline{1494.663} \underline{1562.965} \qquad (CH_{3})_{2}O \qquad g \underline{1416.001} \underline{1495.378}$	C_2H_6	g	<u>1494.663</u>	<u>1562.965</u>	(CH ₃) ₂ O	g	<u>1416.001</u>	<u>1495.378</u>
C ₃ H ₈ g <u>2149.000</u> <u>2229.569</u> HCHO g <u>545.175</u> <u>610.317</u>	C_3H_8	g	2149.000	2229.569	НСНО	g	<u>545.175</u>	<u>610.317</u>
C ₄ H ₁₀ g <u>2800.937</u> <u>2894.173</u> CH ₃ CHO g <u>1160.411</u> <u>1239.221</u>	 $C_{4}H_{10}$	g	<u>2800.937</u>	<u>2894.173</u>	CH ₃ CHO	g	<u>1160.411</u>	<u>1239.221</u>

GB/T 14909-201×

表 A.3(续)							
化合物	聚集态	标准佣 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹	化合物	聚集态	标准煟 kJ·mol ⁻¹	标准焓 kJ·mol ⁻¹
C5H12	g	3455.473	3559.277	(CH ₃) ₂ CO	1	1786.448	1843.325
$C_{6}H_{14}$	1	<u>4105.810</u>	<u>4193.781</u>	CH ₃ Cl	g	<u>727.943</u>	<u>797.953</u>
C_2H_4	g	<u>1359.874</u>	1425.308	CHCl ₃	1	<u>523.778</u>	<u>583.936</u>
C_3H_6	g	2000.011	2079.212	CCl_4	1	<u>417.283</u>	<u>453.157</u>
CH ₂ =CHC ₂ H ₅	g	<u>2654.247</u>	<u>2745.716</u>	CH ₃ Br	g	<u>762.873</u>	836.614
C ₄ H ₆ (1,3-丁二烯)	g	<u>2498.458</u>	2581.458	CH ₃ I	g	<u>814.422</u>	<u>890.681</u>
C_2H_2	g	1265.284	1326.050	CF ₄	g	<u>367.816</u>	<u>445.144</u>
C5H10(环戊烷)	1	3265.084	3326.920	C ₆ H ₅ Cl	1	<u>3163.570</u>	3226.242
C ₆ H ₁₂ (环己烷)	1	<u>3901.121</u>	<u>3962.024</u>	C ₆ H ₅ Br	1	3203.100	3276.404
C_6H_6	1	<u>3293.253</u>	<u>3344.951</u>	CH ₃ NH ₂	g	1031.527	<u>1104.010</u>
CH ₃ C ₆ H ₅	1	<u>3928.390</u>	<u>3994.755</u>	CH ₃ CN	1	1260.686	<u>1295.999</u>
CH ₃ OH	1	716.264	<u>753.974</u>	$CO(NH_2)_2$	s	<u>451.488</u>	<u>443.556</u>
C ₂ H ₅ OH	1	<u>1353.801</u>	<u>1401.878</u>	C ₆ H ₅ NO ₂	1	<u>3201.641</u>	3265.267
C ₃ H ₇ OH	1	2003.738	2063.282	$C_6H_5NH_2$	1	<u>3435.954</u>	<u>3493.199</u>
C ₄ H ₉ OH	1	2657.574	2724.986	C12H22O11(蔗糖)	s	<u>5990.268</u>	<u>6094.232</u>
C ₅ H ₁₁ OH	g	<u>3319.811</u>	<u>3443.990</u>	C_5H_5N	1	2822.318	2875.695
C ₆ H ₅ OH	g	<u>3137.891</u>	3232.064	C9H7N	1	<u>4794.097</u>	4839.838
НСООН	1	<u>288.212</u>	<u>326.730</u>	C ₂ H ₄ O(环氧乙烷)	g	<u>1280.311</u>	<u>1352.721</u>
CH ₃ COOH	1	<u>905.149</u>	<u>953.434</u>				

A.3.1.3 燃料标准佣和标准焓的估算

<u>对于未知化学组成的燃料(例如,低阶煤、页岩油以及各种可再生燃料等),可由以下方法估算其标</u> 准/ 推/ 和标准焓。

燃料的标准規见公式(A.9a)、(A.9b)和(A.9c)

$$E_{g}^{\theta} = -1.2983 \times 10^{-6} (\Delta_{c}H_{g}^{\theta})^{2} + 1.0561 \Delta_{c}H_{g}^{\theta} - 9.4419 \times 10^{2} (12400 < \Delta_{c}H_{g}^{\theta} < 55200)^{......(A.9a)}$$

 $E_{t}^{\theta} = -2.5674 \times 10^{-6} (\Delta_{c}H_{t}^{\theta})^{2} + 1.1270 \Delta_{c}H_{t}^{\theta} - 5.9389 \times 10^{2} (5500 < \Delta_{c}H_{t}^{\theta} < 48600)^{-.....(A.9b)}$
 $E_{s}^{\theta} = -2.2668 \times 10^{-6} (\Delta_{c}H_{s}^{\theta})^{2} + 0.97864 \Delta_{c}H_{s}^{\theta} + 1.3779 \times 10^{2} (2800 < \Delta_{c}H_{s}^{\theta} < 44400)^{-.....(A.9c)}$
 式中:
 $E_{g}^{\theta}, E_{1}^{\theta}, E_{s}^{\theta} = -32668 \times 10^{-6} (\Delta_{c}H_{s}^{\theta})^{2} + 0.97864 \Delta_{c}H_{s}^{\theta} + 1.3779 \times 10^{2} (2800 < \Delta_{c}H_{s}^{\theta} < 44400)^{-....(A.9c)}$
 式中:
 $\frac{L_{g}^{\theta}}{\Delta_{c}H_{1}^{\theta}}, \Delta_{c}H_{s}^{\theta} = -32668 \times 10^{-6} (\Delta_{c}H_{s}^{\theta})^{2} + 0.97864 \Delta_{c}H_{s}^{\theta} + 1.2546 \times 10^{3} (12400 < \Delta_{c}H_{s}^{\theta} < 55200)^{-....(A.9c)}$
 $\frac{M_{t}^{\theta}}{R} = -3.2637 \times 10^{-7} (\Delta_{c}H_{s}^{\theta})^{2} + 1.0013 \Delta_{c}H_{s}^{\theta} + 1.2546 \times 10^{3} (12400 < \Delta_{c}H_{s}^{\theta} < 55200)^{-....(A.10a)}$
 $H_{t}^{\theta} = -2.4489 \times 10^{-6} (\Delta_{c}H_{s}^{\theta})^{2} + 1.1209 \Delta_{c}H_{t}^{\theta} + 2.3726 \times 10^{2} (5500 < \Delta_{c}H_{t}^{\theta} < 48600)^{-....(A.10b)}$

 $H_{s}^{\theta} = -4.2236 \times 10^{-7} \left(\Delta_{c} H_{s}^{\theta} \right)^{2} + 1.0037 \Delta_{c} H_{s}^{\theta} + 1.5416 \times 10^{3} \left(2800 < \Delta_{c} H_{s}^{\theta} < 44400 \right)^{-\dots\dots(A-10c)}$ $\vec{x} + :$

 $H_{g}^{\theta}, H_{I}^{\theta}, H_{s}^{\theta}$ ——分别为气态燃料、液态燃料和固态燃料标准焓的估算值,单位为千焦每千克(kJ·kg⁻¹)。

A.3.2 纯物质的㶲值和焓值

纯物质的㶲值和焓值分别按如下方法计算。

纯物质的㶲见公式(A.11)

$$\underline{E_i(T,p) = E_i^{\theta} + \Delta E_i(T_0, p^{\theta} \to T, p)} \qquad (A.11)$$

式中:

<u> $E_i(T, p)$ </u>—给定温度 T 和压力 p 下, 纯物质 i 的摩尔畑, 单位为千焦每摩尔(kJ·mol⁻¹);

 \underline{E}_i^{θ} ——纯物质 *i* 的标准佣,单位为千焦每摩尔(kJ·mol⁻¹);参见 A.3.1.2;

<u> $\Delta E_i(T_0, p^0 \rightarrow T, p)$ </u> ——纯物质 *i* 从环境参考态温度 T_0 与压力 p^0 变化到给定温度 T 和压力 p 时的烟变,单位为 千焦每摩尔(kJ mol⁻¹),其值见公式(A.12)

$$\Delta E_i(T_0, p^\theta \to T, p) = \Delta H_i(T_0, p^\theta \to T, p) - T_0 \Delta S_i(T_0, p^\theta \to T, p)$$
(A.12)

<u>式中:</u>

<u>△ $H_i(T_0, p^\theta \rightarrow T, p)$ </u>——纯物质 *i* 从环境参考态温度 T_0 与压力 p^θ 变化到给定温度 T 和压力 p 时的焓变,单位为 <u>千</u>焦每摩尔(kJ·mol⁻¹);

<u> $\Delta S_i(T_0, p^0 \rightarrow T, p)$ </u> — 纯物质 *i* 从环境参考态温度 T_0 与压力 p^0 变化到给定温度 T 和压力 p 时的熵变,单位为 <u>千</u>焦每摩尔每开尔文 (kJ·mol⁻¹·K⁻¹)。

式(A-12)中的焓变ΔH_i与熵变ΔS_i可以选择体系适宜的热力学性质模型计算,也可以从适宜的热力学性质图或表查取。

纯物质的焓见公式(A.13)

$$H_i(T,p) = H_i^{\theta} + \Delta H_i(T_0, p^{\theta} \to T, p)$$
(A.13)

<u>式中:</u>

<u> $H_i(T, p)$ </u>—给定温度 T 和压力 p 下, 纯物质 i 的摩尔畑, 单位为千焦每摩尔(kJ·mol⁻¹);

<u> H_i^0 </u>—纯物质 *i* 的标准焓,单位为千焦每摩尔(kJ·mol⁻¹);参见 A.3.1.2。

A.3.3 混合物的烟值和焓值

混合物的㶲值和焓值分别按如下方法计算。

混合物的㶲见公式(A.14)

式中:

<u>*E_i(T, p, x)*</u> 给定温度 *T*、压力和组成 *x* 下,混合物的摩尔///,单位为千焦每摩尔(kJ·mol⁻¹); \hat{f} — 给定温度 *T*和压力 *p* 下,纯组分 *i* 的逸度,单位为帕(Pa);

 f_i^{Θ} ——压力 100 kPa 下,纯组分 *i* 的标准态逸度,单位为帕(Pa)。

式 (A.10) 中的纯组分 i 的逸度 f 与标准态逸度 f^0 可以选择体系适宜的热力学性质模型计算。

理想混合物的摩尔㶲见公式(A.14a)

$$E^{\mathrm{id}}(T, p, \underline{x}) = \sum x_i [E_i(T, p) + RT_0 \ln x_i]$$
(A.14a)

混合物的焓见公式(A.15)

$$H(T, p, \underline{x}) = \sum x_i \left\{ H_i(T, p) - RT^2 \left[\partial \ln \left(\hat{f}_i / f_i^{\theta} \right) \partial \ln T \right]_{p, x} \right\}$$
(A.15)

<u>式中:</u>

H(T, p, x)—— 给定温度 *T*、压力和组成 *x* 下,混合物的摩尔焓,单位为千焦每摩尔(kJ·mol⁻¹)。 理想混合物的摩尔焓见公式(A.15a)

$$H^{id}(T, p, \underline{x}) = \sum x_i H_i(T, p)$$
(A.15a)

A.4 压力低于 100 kPa 条件下的烟值和焓值

对于压力低于 100kPa 条件下的㶲值和焓值计算,可以采用以下三种情况分别处理:

A.4.1 没有化学反应,且压力均低于 100 kPa 的状态

<u>将环境参考态压力设定为 p^θ=0 Pa,环境参考态温度依然维持</u> T₀=298.15 K;不计 0 Pa 与 100 kPa 的压 力变化对物质标准焓与标准㶲的影响,根据给定状态条件,选择 A.3.2 和 A.3.3 的对应公式计算。

A.4.2 涉及化学反应的状态变化

<u>将环境参考态压力设定为 p^θ=0 Pa,环境参考态温度依然维持</u> T₀=298.15 K;第一步将反应物改变至 298.15 K 和 100 kPa,第二步在 298.15 K 和 100 kPa 下进行化学反应,第三步再将反应产物改变至给定温度 和压力下的状态,合计上述三个过程的烟变或焓变,即为给定温度与压力下的反应的烟变或焓变。

A.4.3 对象体系同时存在压力低于 100 kPa 和压力高于 100kPa 的多个状态

<u>统一将环境参考态压力设定为 $p^{\theta}=0$ Pa,环境参考态温度依然维持</u> $T_{0}=298.15$ K;然后逐一计算。

A.5 基本过程的畑损失、畑效率与过程品位

<u>针对实际单元设备,表 A.4 列出了 5 类基本过程的能量衡算、畑衡算、畑损失与畑效率的计算方法,</u> 其中的能量衡算均忽略了过程的动能、位能变化以及由于保温不良造成的热损失。每类过程举例说明了几 种具有不同特征的情况。同时,还列出了供能过程品位与受能过程品位的分析与计算方法。

GB/T 14909 – 201×

表 A.4 几种基本过程的烟损失 <u>、烟效率-</u>	<u>与过程品位的</u> 计算方法
-------------------------------	--------------------

过程		①流动过程	
特征或目的	输出功	输入功	输入功
实际过程或设备	汽(气)轮机、内燃机	压缩机、泵、风机	<u>真空泵</u>
图示	$H_1, E_1 \qquad H_2, E_2$	H_{1}, E_{1}	H_1, E_1
能量平衡	$H_1 = H_2 + W$	$H_1 + W = H_2$	$\underline{H_1} + W = \underline{H_2}$
畑平衡	$E_1 = E_2 + W + I_{\text{int}}$	$E_1 + W = E_2 + I_{\text{int}}$	$\underline{E}_1 + W = \underline{E}_2 + \underline{I}_{\text{int}}$
内部畑损失	$I_{\rm int} = E_1 - E_2 - W$	$I_{\rm int} = E_1 + W - E_2$	$\underline{I_{\text{int}}} = \underline{E}_1 + W - \underline{E}_2$
畑效率	$\frac{W}{E_1 - E_2} = 1 - \frac{I_{\text{int}}}{E_1 - E_2}$	$\frac{E_2 - E_1}{W}$	$\frac{E_1 - E_2}{W}$
供能过程	流体膨胀	动力机械运转	动力机械运转
供能过程品位	$(E_2 - E_1)/(H_2 - H_1)$	1	1
受能过程	动力机械运转	流体压缩	流体被抽成负压
受能过程品位	1	$(E_2 - E_1) / (H_2 - H_1)$	$(E_2 - E_1)/(H_2 - H_1)$

表 A. 4 (续)

过程	①流动过程	②换热过程		
特征或目的	节流膨胀	热量传递	冷量传递	
实际过程或设备	阀门	换热器、加热器	制冷或低温系统的换热器	
图示	H_1, E_1 H_2, E_2	$H_{1}, E_{1} \qquad H_{2}, E_{2}$ $\downarrow Q, E_{q}$ $H_{4}, E_{4} \qquad H_{3}, E_{3}$	$H_{1}, E_{1} \qquad H_{2}, E_{2}$ $\downarrow Q, E_{q}$ $H_{4}, E_{4} \qquad H_{3}, E_{3}$	
能量平衡	$H_1 = H_2$	$H_2 - H_1 = H_4 - H_3$	$H_2 - H_1 = H_4 - H_3$	
畑平衡	$E_1 = E_2 + I_{\text{int}}$	$E_2 - E_1 + I_{\text{int}} = E_4 - E_3$	$E_2 - E_1 + I_{\text{int}} = E_4 - E_3$	
内部㶲损失	$I_{\text{int}} = E_1 - E_2$	$I_{\text{int}} = E_1 - E_2 - E_q$	$I_{\text{int}} = E_1 - E_2 - E_q$	
畑效率	$\frac{E_2}{E_1}$	$\frac{E_4-E_3}{E_1-E_2}$	$\frac{E_4-E_3}{E_1-E_2}$	
供能过程	—	放热过程	受冷过程(放热)	
供能过程品位		$(E_2 - E_1)/(H_2 - H_1)$	$(E_2 - E_1)/(H_2 - H_1)$	
受能过程		吸热过程	供冷过程(吸热)	
受能过程品位		$(E_4 - E_3)/(H_4 - H_3)$	$(E_4-E_3)/(H_4-H_3)$	

表 A. 4 (续)

过 程	③化学反应过程					
特征或目的	绝热反应	放热反应	吸热反应	电解		
实际过程或设备	绝热反应器	有冷却的反应器	有加热的反应器	电解槽		
图示	H_1, E_1	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	$H_1, E_1 \qquad H_2, E_2$	H_{1}, E_{1}		
能量平衡	$H_1 = H_2$	$H_1 = H_2 + Q$	$H_1+Q=H_2$	$H_1 + W = H_2$		
畑平衡	$E_1 = E_2 + I_{\text{int}}$	$E_1 = E_2 + E_q + I_{\text{int}}$	$E_1 + E_q = E_2 + I_{\text{int}}$	$E_1 + W = E_2 + I_{\text{int}}$		
内部㶲损失	$I_{\text{int}} = E_1 - E_2$	$I_{\text{int}} = E_1 - E_2 - E_q$	$I_{\rm int} = E_1 + E_q - E_2$	$I_{int} = E_1 + W - E_2$		
畑效率	$rac{E_2}{E_1}$	$\frac{E_q}{E_1-E_2}$	$\frac{\underline{E_2}-\underline{E_1}}{\underline{E_q}}$	$\frac{E_2 - E_1}{W}$		
供能过程		放热反应	供热过程	供电		
供能过程品位		$1 - T_0 / T_q$	$1 - T_0 / T_q$	1		
受能过程		冷却过程	吸热反应	电解反应		
受能过程品位		$(E_2 - E_1)/(H_2 - H_1)$	$(E_2 - E_1)/(H_2 - H_1)$	$(E_2 - E_1)/(H_2 - H_1)$		

表 A. 4 (续)

过程	④混合	过程	⑤分离	§过程
特征或目的	绝热混合	放热混合	输入热的分离	输入功的分离
实际过程或设备	绝热混合器	有冷却的混合器	蒸馏釜	微分过滤、反渗透
图示	H_1, E_1 H_1, E_1 H_2, E_2 H_3, E_3	$H_{1}, E_{1} \qquad \stackrel{\land}{\longrightarrow} \mathcal{Q}, E_{q}$ $H_{2}, E_{2} \qquad H_{3}, E_{3}$	$\begin{array}{c} H_{1}, E_{1} \\ H_{1}, E_{2} \\ \downarrow \\ \downarrow \\ Q, E_{q} \end{array} \xrightarrow{H_{2}, E_{2}} \\ H_{3}, E_{3} \end{array}$	H_{1}, E_{1} H_{2}, E_{2} H_{3}, E_{3}
能量平衡	$H_1 + H_2 = H_3$	$H_1 + H_2 = H_3 + Q$	$H_1 + Q = H_2 + H_3$	$H_1 + W = H_2 + H_3$
畑平衡	$E_1 + E_2 = E_3 + I_{\text{int}}$	$E_1 + E_2 = E_3 + E_q + I_{\text{int}}$	$E_1 + E_q = E_2 + E_3 + I_{\text{int}}$	$E_1 + W = E_2 + E_3 + I_{int}$
内部畑损失	$I_{\text{int}} = E_1 + E_2 - E_3$	$I_{\text{int}} = E_1 + E_2 - E_3 - E_q$	$I_{\text{int}} = E_1 + E_q - E_2 - E_3$	$I_{\text{int}} = E_1 + W - E_2 - E_3$
畑效率	$\frac{E_3}{E_1 + E_2}$	$\frac{E_q + E_3}{E_1 + E_2}$	$\frac{\left(E_2+E_3\right)-E_1}{E_q}$	$\frac{\left(E_2 + E_3\right) - E_1}{W}$
供能过程		混合过程	供热过程	机械功或供电
供能过程品位		$1 - T_0 / T_q$	$1 - T_0 / T_q$	1
受能过程		冷却过程	分离过程	分离过程
受能过程品位		$(E_3 - E_1 - E_2)/(H_3 - H_1 - E_2)$	$(E_2+ E_3 - E_1)/(H_3 + H_2 - H_1)$	$(E_2+ E_3 - E_1)/(H_3 + H_2 - H_1)$

附录 B

(资料性附录)

佣分析方法的计算实例

本附件是佣分析方法的基本计算实例的说明。

B.1 四种建筑供热方式佣分析及品位分析

B.1.1 确定对象系统

本例选取的四种建筑供热方式包括:锅炉供热系统、余热供热系统、直接电热系统以及热电热泵供热系统。各供热系统的流程图如图 B.1.1 所示。

四种方案的输入能量的形式不同,但输出给用户的相同为热水。用户每天需要3吨的热水供应,用户 侧换热器进出口温度为50/70℃。在这四种方案中,各换热器中的热损失、管网损失等忽略不计。在方案一 和方案四中,换热器供能侧的供/回水温度为95/70℃,其中,方案一锅炉的热效率为75%;方案三中,热 泵从50℃的热水源取热,热电热泵的COP取3.0。

B.1.2 明确环境基准

本案例未采用本标准的环境参考态温度,而是根据所在地区情况设环境温度 T₀为 293.15 K (20℃)。

B.1.3 说明计算依据

本案例中,水的㶲值采用本标准中的式(A.2)进行计算,水的比热容近似为定值4.18 kJ/kg·K⁻¹。本案 例中采用煤为燃料,低热值为25812 kJ/kg,高热值为26922 kJ/kg。煤的比标准/M采用本标准的式(A.9c)

进行计算。

B.1.4 能量衡算、畑分析与能量品位分析

以下计算中,以一天为单位,进行能量衡算和㶲分析。

(1) 能量衡算

用户每天需要的热量为:

$$Q_{\rm h} = \dot{M}c_{\rm p}\Delta T = 3000 \times 4.18 \times (70 - 50) = 250.8({\rm MJ})$$

方案一中燃料燃烧放热为:

$$H_{\rm f} = Q_{\rm h} / \eta = \frac{250.8}{0.75} = 334.4 (\rm MJ)$$

方案二和方案四中电网电输入和余热输入为:

$$H_{e2} = H_{h4} = Q_{h} = 250.8$$
(MJ)

方案三中电网电输入和低温热源提取分别为:

$$H_{e3} = \frac{Q_{\rm h}}{\rm COP} = \frac{250.8}{3} = 83.6(\rm MJ)$$

$$H_{\rm h3} = Q_{\rm h} - H_{\rm e3} = 250.8 - 83.6 = 167.2 (\rm MJ)$$

四种供热方案的能量衡算如表 B.1.1 所示。

表 B.1.1 四种供热方案的能量衡算

方案	输入/MJ		输出/MJ	
			用户获得热量	250.8
	燃料燃烧放热	334.4	热损失	83.6
			输出合计	334.4
	电网电输入	250.8	用户获得热量	250.8
	电网电输入	83.6		
<u> </u>	低温热源提取	167.2	用户获得热量	250.8
	两项输入合计	250.8		
四	余热输入	250.8	用户获得热量	250.8

(2) 佣分析

在这四种方案中,供热系统的收益//即用户侧热水进出口的///差,使用本标准中的式(A.2)进行计算可得:

$$\Delta E_{\text{user}} = mc_{\text{p}} [(T_{\text{Out}} - T_{\text{In}}) - T_0 \ln(\frac{T_{\text{Out}}}{T_{\text{In}}})]$$

= 3×10³×4.18×[(70-50) - 293.15 ln($\frac{70 + 273.15}{50 + 273.15}$)] = 26.3(MJ)

方案一中,锅炉输入燃料的比标准烟采用本标准的式(A.5c)进行计算:

$$e_f^{\theta} = -2.2668 \times 10^{-6} (\Delta H_s^{\theta})^2 + 0.97864 \Delta H_s^{\theta} + 1.3779 \times 10^2 = 24842 (kJ/kg)$$
则一天内锅炉输入燃料的烟:

$$\dot{E}_f = e_f^{\theta} \cdot \dot{M}_f = 24842 \times \frac{334 \times 10^3}{25812} = 321.4$$
(MJ)

方案二与方案三中, 电网输入烟分别为:

$$E_{e2} = H_{e2} = 250.8$$
(MJ) $E_{e3} = H_{e3} = 83.6$ (MJ)

低温热源的输入畑即低温热水源的进出口烟差:

$$\Delta E_{h3} = mc_{p} [(T_{In} - T_{Out}) - T_{0} \ln(\frac{T_{In}}{T_{Out}})]$$

= $\frac{167.2}{50 - 35} \times [(50 - 35) - 293.15 \ln(\frac{50 + 273.15}{35 + 273.15})] = 9.2 (MJ)$

因此,方案三中总的支付畑即电网输入畑和低温热源的输入畑之和为 92.8 MJ。

方案四中,余热输入畑即热水源的进出口畑差:

$$\Delta E_{h4} = mc_{p} [(T_{In} - T_{Out}) - T_{0} \ln(\frac{T_{In}}{T_{Out}})]$$

= $\frac{250.8}{95 - 70} \times [(95 - 70) - 293.15 \ln(\frac{95 + 273.15}{70 + 273.15})] = 40.5 (MJ)$

四种方案的烟衡算如表 B.1.2 所示。

表 B.1.2 四种供热方案的烟分析

方案	支付㶲/MJ		收益畑/MJ	煟损失/MJ	煝效率/%
	燃料化学畑	321.4	26.3	295.1	8.18
	电网电输入畑	250.8	26.3	224.5	10.49
	电网电输入㶲	83.6			
	供能侧㶲变	9.2	26.3	66.5	28.34
	合计	92.8			
四	供能侧㶲变	40.5	26.3	14.2	64.94

表 B.1.2 中的烟效率为用户获得的收益烟与外界输入的支付烟之比。

(3) 能量品位分析

计算并归纳四种供热方案的输入侧能的品位与输出侧能的品位如表 B.1.3。这里的能量品位是能量传输 过程中表现出来的,属于过程品位。

方案	输入	输出
<u> </u>	0.88	0.10
<u> </u>	1	0.10
	电: 1; 低温热源: 0.06; 平均: 0.37	0.10
四	0.16	0.10

表 B.1.3 四种供热方案的能量品位

B.1.5 评价与分析

如表 B.1.1 所示,在用户获得相同热量时,方案一由于燃料的不完全燃烧,需要输入比用户所需热量 更多的燃料。方案二、三和四外界需要输入的热量相同。其中,方案三中,一部分能量来自于电网电,另 一部分热量取自于低温热源。方案三相比于方案二需要更少的电输入,方案三相比于方案四需要更少更低 温的余热输入。

表 B.1.2 中的烟效率不仅表明用户获得的烟占总输入的比例,还表明了系统不可逆损失的大小。烟效 率越大,系统的不可逆性越小,烟损失越小。因此,方案一(燃料燃烧供暖)的烟损失在四种方案中最大, 系统的不可逆性大;方案四(余热供暖)的烟损失最小,系统的不可逆性小。方案三(热电热泵)的烟损 失小于方案二(电加热)。

图 B.1.2 四种供热方案的能量品位变化图

如图 B.1.2 所示,进一步可以根据表 B.1.3 绘制四种方案的能量品位变化。图 B.1.2 中的阴影部分面积

GB/T 14909-201×

为供热过程的烟损失。结合图 B.1.2 及表 B.1.3 可知,虽然方案二、三和四的能量输入相同,但由于三种方案热源品位的不同,因此三种方案的烟效率也不同。在这三种方案中,输入热源品位越高,烟效率越低。 其中,方案三的热泵利用少量的电能提高了低温热源的能量品位,即原本不能被用户直接利用的低品位热量在少量高品位电的辅助下升级为可以利用的热量,这有效地提高了低品位热源的利用范围。

B.2 甲醇合成与分离工艺的烟分析

B.2.1 确定对象系统

本例选取简化的甲醇合成工艺流程进行分析。如图 B.2.1 所示的流程图,分成了两个子系统,反应子系 统和分离子系统。反应子系统包括循环气压缩机(COMP)、混合器(MIX)、原料预热换热器(HX)和 甲醇合成反应器(REACT)等单元设备;分离子系统包括反应出料冷却器(COOL)、气液分离器(FLASH)、 精馏塔(DIST)和分流器(SPL)等单元设备。图 B.2.1 中,合成气(SYNGAS)与循环气物流(S-9)混 合,反应生成的甲醇气物流(S-4)经分离子系统处理,获得产品甲醇物流(S-10);同时有排出物流(LIGHT) 和驰放气(PURGE)。

图 B.2.1 甲醇合成工艺流程示意图

本例工艺流程的原料碳氢比为 1:2.4。反应条件规定为 503.15 K、5 MPa。各工艺物流的温度、压力、流量与组成列于表 B.2.1。

B.2.2 明确环境基准

本例采用本标准的环境参考态计算物流热物性。

B.2.3 说明计算依据

在本例的物流热物性计算中,气相选择 virial 方程,液相假设为理想混合物。采用流程模拟软件与 Exergy Calculator[®]结合的方式计算数据。

物流	SYNGAS	S-1	S-2	S-3	S-4	S-5	S-6
温度/℃	30.0	67.4	200.0	230.0	92.7	30.0	28.9
压力/MPa	3.16	3.16	3.16	4.93	4.93	4.93	3.95
气相分率	1	1	1	1	1	1	1
摩尔流量/kmol/h	100.00	43B.20	43B.20	397.28	397.28	397.28	376.00
摩尔分率							
N_2	0	0.01	0.01	0.01	0.01	0.01	0.01
O_2	0	0	0	0	0	0	0
H_2	0.67	0.67	0.67	0.64	0.64	0.64	0.67
СО	0.28	0.23	0.23	0.20	0.20	0.20	0.21
CO_2	0.03	0.04	0.04	0.05	0.05	0.05	0.05
CH_4	0.02	0.05	0.05	0.05	0.05	0.05	0.05
CH ₄ O	0	0.01	0.01	0.06	0.06	0.06	0.01
物流	S-7	S-8	S-9	S-10	LIGHT	PURGE	
温度/℃	28.9	28.9	78.9	184.5	113.6	28.9	
压力/MPa	3.95	3.95	5.92	2.96	2.96	3.95	
气相分率	0	1	1	0	1	1	
摩尔流量/kmol/h	21.27	338.40	338.40	20.81	0.47	37.60	
摩尔分率							
N_2	0	0.01	0.01	0	0.01	0.01	
H ₂ O	0.03	0	0	0.03	0	0	
H_2	0	0.67	0.67	0	0.06	0.67	
CO	0	0.21	0.21	0	0.05	0.21	
CO_2	0.01	0.05	0.05	0	0.60	0.05	
CH_4	0	0.05	0.05	0	0.07	0.05	
CH ₄ O	0.96	0.01	0.01	0.97	0.22	0.01	

表 B.2.1 物流的温度、压力、流量与组成

B.2.4 焓平衡、烟平衡与能量品位数据的计算

表 B.2.2 为本例各工艺物流的焓值、㶲值和能量品位计算结果。物流的能量品位在 0.811 至 0.950 之间。 物流 S-7 与 S-10 的能量品位最高,因其中含有大量甲醇产物。尽管物流 LIGHT 的焓值、㶲值和能量品位相 对最低,其中仍含有 22%甲醇。

GB/T 14909-201×

 物流	SYNGAS	S-1	S-2	S-3	S-4	S-5	S-6
焓值/GJ h-1	29.753	135.762	137.551	135.794	134.005	132.402	116.889
畑值/GJ h ⁻¹	25.838	117.970	118.437	117.930	117.378	117.196	102.259
 物质品位	0.868	0.869	0.861	0.868	0.876	0.885	0.875
 物流	S-7	S-8	S- 9	S-10	LIGHT	PURGE	
焓值/GJ h-1	15.363	105.200	105.716	15.647	0.149	11.689	
畑值/GJ h-1	14.590	92.033	92.424	14.567	0.121	10.226	
物质品位	0.950	0.875	0.874	0.931	0.811	0.875	

表 B.2.2 物流的焓值、㶲值和物质品位

表 B.2.3 为各单元设备的热负荷及其对应的烟变。例如,压缩机的功耗为 0.645GJ h⁻¹;精馏塔再沸器的 热负荷(蒸汽消耗)为 0.298GJ h⁻¹等。换热设备的烟变根据该设备的热负荷Δ*H*_q与该设备的选定温度(K), 由下式计算

$\Delta E_{\rm q} = \Delta H_{\rm q} \left(1 - 298.15/T \right)$

表 B.2.3 各单元设备进出口物流的焓变与烟变

山友	压缩机	反应器	冷却器	精馏塔再沸器	精馏塔冷凝器
以	COMP	REACT	COOL	DIST-REBOIL	DIST-COND
焓变/GJ h-1	0.516	-1.757	-1.603	0.298	-0.015
设备的选定温度/K		436.95	336.35	457.65	386.75
畑变/GJ h⁻¹	0.391	-0.507	-0.182	0.104	-0.004

表 B.2.4 和表 B.2.5 分别为本例两个子系统的焓衡算(能量平衡)和烟衡算的结果。表 B.2.5 中,子系统的内部烟损失为输入烟与输出烟之差值。

表 B.2.4 子系统的焓衡算

子系统		输入/GJ h-1	输出/GJ h ⁻¹	
	原料合成气	29.753 (21.94%)	反应产物气流	134.005 (98.83%)
反应子系统	循环气	105.200 (77.58%)	反应器散热量	1.593(1.17%)
	压缩机功耗	0.645 (0.48%)		
		输入合计 135.598 (100.00%)		输出合计 135.598(100.00%)

表 B.2.4 (续)

子系统	输入/GJ h ⁻¹		输出/GJ h ⁻¹	
	反应产物气流	134.005 (99.78%)	产品甲醇	15.647 (11.65%)
	精馏塔再沸器加热量	0.298 (0.22%)	循环气	105.200 (78.33%)
分离子系统			驰放气	11.689 (8.70%)
			排放物流	0.149 (0.11%)
			冷却器散热量	1.603 (1.19%)
			精馏塔冷凝器散热量	0.015 (0.01%)
	输入合计	134.303 (100.00%)	输出合计	- 134.303 (100.00%)

表 B.2.5 子系统的烟衡算

子系统	输入/GJ h ⁻¹		输出/GJ h ⁻¹		
	原料合成气	25.838 (21.80%)	反应产物气流	117.378 (99.04%)	
	循环气	92.033 (77.66%)	反应器散热㶲变	0.506 (0.43%)	
反应子系统	压缩机功耗	0.645 (0.54%)			
			内部㶲损失	0.632 (0.53%)	
	输入合计	118.516 (100.00%)	输出合计	118.516 (100.00%)	
	反应产物气流	117.378 (99.91%)	产品甲醇	14.567 (12.40 %)	
	精馏塔再沸器㶲变	0.104 (0.09%)	循环气	92.033 (78.34%)	
			驰放气	10.226 (8.70%)	
八页乙石公			排放物流	0.121 (0.10%)	
万 丙丁			冷却器㶲变	0.182 (0.15%)	
			精馏塔冷凝器烟变	0.004 (0.003%)	
			内部畑损失	0.349 (0.30%)	
	输入合计	+ 117.482 (100.00%)	输出合计	117.482 (100.00%)	

B.2.5 评价与分析

计算可得,分离子系统局部///损失率为93.4%,是损失的主要部分。其中驰放气造成的外部///损失又是重要原因。另外,大量的循环气物流消耗了相当数量的功(电)。精馏塔的造成损失也相当大。

系统的普遍㶲效率为

$$\eta_{\rm gen} = \frac{E_{\rm out}}{E_{\rm in}} = 1 - \frac{I_{\rm int}}{E_{\rm in}} = 1 - \frac{\left(0.632 + 0.349\right)}{\left(25.838 + 0.645 + 0.104\right)} = 0.963$$

即 96.3%。此外,可以认为循环气压缩功耗和精馏塔蒸汽消耗是系统的主要㶲消耗,而反应器与精馏塔进出物流的㶲变可以视为是系统的主要㶲收益,则系统的目的㶲效率为

$$\eta_{\rm obj} = \frac{E_{\rm g}}{E_{\rm p}} = \frac{(92.033 + 25.838 - 117.378) + (14.590 - 14.567 - 0.121)}{(0.645 + 0.104)} = 0.527$$

即 52.7%。同时,可有系统的单位产品甲醇的㶲消耗

$$\omega = \frac{E_{\rm p}}{M} = \frac{0.645 + 0.104}{0.97 \times 20.81 \times 32} = 0.0012 \quad (\text{GJ kg}^{-1})$$

针对本例题的具体分析结果,可采取措施提高系统的烟效率。例如,回收利用驰放气和排放物流,以减少外部烟损失;采用多塔精馏或热泵精馏,以降低分离过程的烟损失;开展工艺过程的能量系统优化, 实现废弃能量的梯级利用;优化工艺参数,调整循环气的质量流量;同时可以通过采用高效反应器等先进 技术来改进生产工艺,以减少反应过程的烟损失。